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An efficient modified Fourier series-based sampling surface approach is proposed for the analytical evaluation of the vibration
characteristics of thick curved beams subjected to general restraints. The theoretical models of the beams are formulated by the
theory of elasticity in two dimensions, which allows arbitrary thickness configurations to be tackled. As an innovation of this
work, the approach is based upon the sampling surface method combined with the use of modified Fourier series approximation.
In particular, the transverse beam domain is discretized by a set of sampling surfaces with unequal spaces, and the displacement
components in beam domain coinciding with these surfaces are mathematically described as a set of modified Fourier series in
which certain supplementary functions are included to remove all the relevant discontinuities with the displacements and their
derivatives at the boundaries to form a mathematically complete set and guarantee the results convergent to the exact solutions.
The final results are numerically solved using a modified variational principle by means of Lagrange multipliers and penalty
method for the sake of arbitrary boundary conditions.The influences of transverse normal and shear deformation on the vibration
characteristics with respect to the geometrical dimension and boundary conditions are systematically evaluated.

1. Introduction

Beams are one of the most extensively used structural com-
ponents in a variety of branches of engineering applications,
such as aircraft, civil construction, automobile, and naval ves-
sel. The analytical evaluation of the vibration characteristics
of beams has attracted much attention in the past decades
because this information is very important for the low-vibra-
tion design and safety validation of engineering structures.

Strictly speaking, beams are three-dimensional (3D)
blocks in physical sense for which the axial length is relatively
larger than the other two dimensions.The 3D linear theory of
elasticity may be applied in the theoretical modeling. How-
ever, such studies require high computing performance and
lager storage capacities [1]. As a consequence, the beam prob-
lems are always simplified to a variety of one-dimensional
(1D) representations by introducing several hypotheses in the
kinetic relations and constitutive equations since the axial
dimensions are relatively larger than the others. A variety of
simplified 1D theories have been proposed so far, which are

commonly divided into two aspects as follows: the classical
beam theory (CBT) and the shear deformation beam theories
(SDBTs). These specialties make them very attractive in the
mechanics analysis of beams [2–10]. However, it is needed
to be pointed out that the CBT is incapable of considering
transverse deformation effect. The error of the calculating
result is always great when dealing with moderately thick
beams [11], since the shear effects on the cross section are
more pronounced in moderately thick to thick beams and
they are disregarded in the CBT. The FSDT overcomes this
drawback and offers a more accuracy modeling theory since
transverse deformation is further taken into account, even
though the solutions based on the FSDTs are still not accurate
due to the fact that the transverse normal components are
still neglected. In addition, shear correction factors have to
be incorporated in the FSDTs to adjust the transverse shear
stiffness due to the fact that the transverse shear strains in the
FSDTs are assumed to be constant in the thickness direction.
The shear correction factors are difficult to determine because
they depend not only on the geometric parameters, but also
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on the loading and boundary conditions. In order to obtain
accurate solutions for thick beams, higher-order variation of
axial displacement has been introduced into a wide variety of
HSDTs. These theories are more accurate than the CBT and
FSDTs without shear correction factors. But, unfortunately,
the transverse normal effects are ignored in the conventional
HSDTs. Thus, in order to analyze thick beams accurately,
more advanced theories considering the through-thickness
shear deformations are essentially required. Recently, Carrera
[12, 13] developed the so-called Carrera Unified Formulation
(CUF). According to the CUF, the obtained theories can have
an order of expansion depending on the thickness functions
that are used, which allows one to take into account the effects
of the transverse normal effects.

The static and dynamic analysis of thick beam has been
extensively investigated by many researchers. Chen et al.
[14] proposed a mixed approach for the bending and free
vibration of arbitrarily thick beams. In their method, the
state space method and the differential quadrature method
are combined to solve the problems. The method was
further applied to the calculation of the elasticity solution
of FGM beams by Ying et al. [15]. Hasheminejad and
Rafsanjani [16] obtained semianalytical results for the tran-
sient dynamic response of thick simply supported beams
through a powerful state space technique and the Laplace
transformation. Thermoelastic behavior of arbitrarily simply
supported beams subjected to thermomechanical loads is
studied by Xu and Zhou [17, 18]. Zenkour et al. [19] studied
the influence of transverse deformations on fiber reinforced
viscoelastic beams. Malekzadeha and Karami [20] developed
a mixed differential quadrature (DQ) and finite element (FE)
approach for free vibration and buckling analysis of thick
beams. This method applies a finite element discretization
technique along axial direction while the thickness direction
is discretized using DQM. The developments of studies of
static and dynamic analysis of beams can be found in several
monographs by Qatu [1], Rosen [21], Chidamparam and
Leissa [22], Hodges [23], and Hajianmaleki and Qatu [24].

From the review of the literature, it is clear that although a
lot of attention has been focused on static and dynamic anal-
ysis of thick beams, the extensive volume of literature on this
subject was mainly limited to uniform straight beams with
classical boundary conditions since their governing equation
is much easier to be derived and tackled. The equations for a
curved beam are more complicate and sophisticated because
of curvilinear geometry. Inevitably, this introduces inherent
complexity in finding their solutions [25]. In addition, the
previous reviews showed that most beams are analyzed based
on Euler-Bernoulli beam theory, Timoshenko beam theory,
or the higher-order one-dimensional theory models which
neglect the transverse normal deformation effect (thickness
stretching). This appears quite inappropriate since the effect
of transverse normal deformation on the static dynamic
characteristics of thick beams is significant, especially at
higher vibration modes of curved beams. Carrera et al. [26]
and Koiter [27] recommended that a refinement of one-
dimensional simplification theories ismeaningless, unless the
effects of transverse shear and normal deformations are all
taken into account. Thus, seldom works are available that

investigate the influences of transverse shear and normal
deformations on the vibration characteristics of evident thick
curved beams. The present work attempts to fill this gap.

In this paper, the modified Fourier series-based sampling
surface method is further extended to the evaluation of elas-
ticity solution of thick curved beams.The method was devel-
oped by Ye and Jin [28] based on a modified Fourier series
technique proposed by Li [29] and SaS approach originally
proposed by Kulikov et al. [30, 31].Themethod combines the
advantages of both approaches. A comprehensive numerical
analysis and discussions are conducted to investigate the
influence of transverse normal and shear deformations on
the vibration characteristics of curved beams. The article
is organized as follows: the theoretical formulation includ-
ing model description, plan stress assumption, application
of sampling surface method, and modified Fourier series
approximation is presented in Section 2; convergence studies,
results verification, and transverse deformation investigation
are given in Section 3 and the concluding remarks are
summarized in Section 4.

2. Theoretical Formulations

2.1. Model Description. A thick circular beam shown in
Figure 1 is considered, in which 𝑏, ℎ, and 𝑅 represent the
width, thickness, and inner radius of the beam. The beam is
bounded along its edges by the boundaries 𝜃 = 𝜃0 and 𝜃 = 𝜃1.
The bottom surface of the beam is selected as the reference
surface with the three orthogonal curvilinear coordinates 𝜃,𝑦, and 𝑧; see Figure 1. In this paper, the beams are assumed to
be isotropic and homogeneous and to vibrate freely in the 𝜃-𝑧
plane. 𝑢, V, and𝑤 denote the three displacement components
in the axial, lateral, and normal directions, respectively.

2.2. Plane Stress Assumption. As mentioned previously, the
beam under consideration vibrates freely in the 𝜃-𝑧 plane.
Therefore, the plane stress hypothesis is adopted in the
theoretical formulation for the purpose of improving the
computational efficiency and maintaining the modeling pre-
cision synchronously.

For a curved beam, the 3D strain-displacement relations
for any point in the domain of the beam can be found as [32]

𝜀𝜃 = 1𝑅𝑧 (
𝜕𝑢𝜕𝜃 + 𝑤) ,

𝛾𝜃𝑧 = 𝜕𝑢𝜕𝑧 + 1𝑅𝑧 (
𝜕𝑤𝜕𝜃 − 𝑢) ,

𝜀𝑦 = 𝜕V𝜕𝑦 ,
𝛾𝑦𝑧 = 𝜕V𝜕𝑧 + 𝜕𝑤𝜕𝑦 ,
𝜀𝑧 = 𝜕𝑤𝜕𝑧 ,
𝛾𝜃𝑦 = 𝜕𝑢𝜕𝑦 + 1𝑅𝑧 (

𝜕V𝜕𝜃) ,

(1)
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Figure 1: Geometry and reference system for a curved beam and the diagrammatic sketch of sampling surface distribution.

where 𝑅𝑧 = 𝑅 + 𝑧, 𝜀𝜃, 𝜀𝑦, and 𝜀𝑧 stand for the normal
strains, and 𝛾𝑦𝑧, 𝛾𝜃𝑧, and 𝛾𝜃𝑦 are the shear components. In the
case of homogeneous materials and linear small deformation
assumptions, the 3D stresses can be derived according to
Hooke’s law:

{{{{{{{{{{{{{{{{{{{{{{{

𝜎𝜃𝜎𝑦𝜎𝑧𝜏𝑦𝑧𝜏𝜃𝑧𝜏𝜃𝑦

}}}}}}}}}}}}}}}}}}}}}}}

=
[[[[[[[[[[[[
[

𝐶󸀠11 𝐶󸀠12 𝐶󸀠13 0 0 0
𝐶󸀠12 𝐶󸀠22 𝐶󸀠23 0 0 0
𝐶󸀠13 𝐶󸀠23 𝐶󸀠33 0 0 0
0 0 0 𝐶󸀠44 0 0
0 0 0 0 𝐶󸀠55 0
0 0 0 0 0 𝐶󸀠66

]]]]]]]]]]]]
]

{{{{{{{{{{{{{{{{{{{{{{{

𝜀𝜃𝜀𝑦𝜀𝑧𝛾𝑦𝑧𝛾𝜃𝑧𝛾𝜃𝑦

}}}}}}}}}}}}}}}}}}}}}}}
= C󸀠𝜀,

(2)

where 𝜎𝜃, 𝜎𝑦, and 𝜎𝑧 stand for the normal stresses; 𝜏𝑦𝑧, 𝜏𝜃𝑧,
and 𝜏𝜃𝑦 are the shear component. C󸀠 is the material stiffness
matrix.

𝐶󸀠11 = 𝐶󸀠22 = 𝐶󸀠23 = 𝐸 (1 − ])(1 + ]) (1 − 2]) ,
𝐶󸀠12 = 𝐶󸀠13 = 𝐶󸀠23 = V𝐶󸀠11(1 − ]) ,
𝐶󸀠44 = 𝐶󸀠55 = 𝐶󸀠66 = 𝐸2 (1 + ])

(3)

in which 𝐸 means Young’s module of the material and ]
represents Poisson’s ratio.

Furthermore, (2) can be rearranged in the form of matrix
as

{𝜎𝑖
𝜎𝑜

} = [C󸀠𝑖𝑖 C󸀠𝑖𝑜
C󸀠𝑜𝑖 C

󸀠
𝑜𝑜

]{𝜀𝑖
𝜀𝑜

} ,

𝜎𝑖 = {{{{{
𝜎𝜃𝜎𝑧𝜏𝜃𝑧
}}}}}
,

𝜎𝑜 =
{{{{{{{
𝜎𝑦𝜏𝑦𝑧𝜏𝜃𝑦
}}}}}}}
,

𝜀𝑖 = {{{{{
𝜀𝜃𝜀𝑧𝛾𝜃𝑧
}}}}}
,

𝜀𝑜 =
{{{{{{{
𝜀𝑦𝛾𝑦𝑧𝛾𝜃𝑦
}}}}}}}
,

C󸀠𝑖𝑖 = [[[
[
𝐶󸀠11 𝐶󸀠13 0
𝐶󸀠13 𝐶󸀠33 0
0 0 𝐶󸀠55

]]]
]
,

C󸀠𝑖𝑜 = [[[
[
𝐶󸀠12 0 0
𝐶󸀠23 0 0
0 0 0

]]]
]
= (C󸀠𝑜𝑖)T ,

C󸀠𝑜𝑜 = [[[
[
𝐶󸀠22 0 0
0 𝐶󸀠44 0
0 0 𝐶󸀠66

]]]
]
.

(4)

Therefore, the final stress-strain relations for the beam
under plane stress hypothesis can be obtained as

𝜎𝑖 = C𝜀𝑖, (5)

where C = C󸀠𝑖𝑖 − C󸀠𝑖𝑜(C󸀠𝑜𝑜)−1C󸀠𝑖𝑜.
2.3. Application of Sampling Surface Technique. The sampling
surface technique was originally proposed by Kulikov et al.
[33–35]. A brief resume and application of this technique are
included in this section.
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As shown in Figure 1, 𝑆1, . . . , 𝑆𝑗, . . . , 𝑆𝐽 stand for the
chosen sampling surfaces inside the transverse domain of
the beam to introduce the displacement components of these
surfaces as basic beam variables. 𝐽 is the total number of
the sampling surfaces. These surfaces are selected to be
nonequally spaced and paralleled to the beam’s middle sur-
face. For application of the sampling surface technique, it was
found that the distribution of the sampling surface has a great
effect on the convergence and accuracy of the solutions. For
the sake of the convergence, transverse coordinates of these
surfaces are chosen as the roots of Chebyshev polynomial:

𝑧1 = 0,
𝑧𝐽 = ℎ,
𝑧𝑗 = 𝑧1 + 𝑧𝐽2 − ℎ2 cos(𝜋2𝑗 − 32𝐽 − 4) ;

2 ≤ 𝑗 ≤ 𝐽 − 1.
(6)

Therefore, the basic variables in the axial and normal direc-
tions of an arbitrary sampling surface can be given by

𝑢 (𝜃, 𝑧𝑗, 𝑡) = 𝑢𝑗 (𝜃) e𝑖𝜔𝑡,
𝑤 (𝜃, 𝑧𝑗, 𝑡) = 𝑤𝑗 (𝜃) e𝑖𝜔𝑡;

1 ≤ 𝑗 ≤ 𝐽,
(7)

where 𝑢𝑗(𝜃) and 𝑤𝑗(𝜃) stand for the axial and transverse
displacement components, respectively. 𝑡 stand for the time
variable, 𝜔 is the circular frequency. As a consequence,
displacement field of the beam under vibration can be
calculated by

{𝑢 (𝜃, 𝑧, 𝑡) , 𝑤 (𝜃, 𝑧, 𝑡)}
= ∑
𝑗

{𝐿𝑗 (𝑧) 𝑢𝑗 (𝜃) , 𝐿𝑗 (𝑧) 𝑤𝑗 (𝜃)} 𝑒𝑖𝜔𝑡;
𝑧1 ≤ 𝑧 ≤ 𝑧𝐽

(8)

and 𝐿𝑗(𝑧) is Lagrange’s interpolation of degree 𝐽 − 1:
𝐿𝑗 (𝑧) = ∏

𝑟 ̸=𝑗

𝑧 − 𝑧𝑟𝑧𝑗 − 𝑧𝑟 ; 𝑧1 ≤ 𝑧 ≤ 𝑧𝐽. (9)

According to (1), strains on the 𝑗th sampling surface can be
found as

{𝜀𝜃 (𝜃, 𝑧𝑗, 𝑡) , 𝜀𝑧 (𝜃, 𝑧𝑗, 𝑡) , 𝛾𝜃𝑧 (𝜃, 𝑧𝑗, 𝑡)}
= {𝜀𝑗𝜃 (𝜃) , 𝜀𝑗𝑧 (𝜃) , 𝛾𝑗𝜃𝑧 (𝜃)} 𝑒𝑖𝜔𝑡; 1 ≤ 𝑗 ≤ 𝐽,

𝜀𝑗𝜃 (𝜃) = 1𝑅 + 𝑧𝑗 (
𝜕𝑢𝑗 (𝜃)𝜕𝜃 + 𝑤𝑗 (𝜃)) ,

𝜀𝑗𝑧 (𝜃) = ∑
𝑟

𝑀𝑟𝑗𝑤𝑟 (𝜃) ,
𝛾𝑗𝜃𝑧 (𝜃) = ∑

𝑟

𝑀𝑟𝑗𝑢𝑟 (𝜃) + 1𝑅 + 𝑧𝑗 (
𝜕𝑤𝑗 (𝜃)𝜕𝜃 − 𝑢𝑗 (𝜃)) ,

(10)

where𝑀𝑟𝑗 are determined by

𝑀𝑟𝑗 = 1𝑧𝑟 − 𝑧𝑗∏𝑠 ̸=𝑟,𝑗
𝑧𝑗 − 𝑧𝑠𝑧𝑟 − 𝑧𝑠 for 𝑟 ̸= 𝑗,

𝑀𝑗𝑗 = −∑
𝑟 ̸=𝑗

𝑀𝑟𝑗 for 𝑟 = 𝑗. (11)

Similarly, strain distribution in the whole space should be
represented as a linear combination of their corresponding
strain components of the entire sampling surfaces as (8).

{𝜀𝜃, 𝜀𝑧, 𝛾𝜃𝑧}
= ∑
𝑗

{𝐿𝑗 (𝑧) 𝜀𝑗𝜃 (𝜃) , 𝐿𝑗 (𝑧) 𝜀𝑗𝑧 (𝜃) , 𝐿𝑗 (𝑧) 𝛾𝑗𝜃𝑧 (𝜃)} e𝑖𝜔𝑡;
𝑧1 ≤ 𝑧 ≤ 𝑧𝐽.

(12)

The energy functional for the curved beam under the
circumstance of free vibration is

Π𝑠 = 𝑇𝑠 − 𝑈𝑠, (13)

where𝑈𝑠 and𝑇𝑠 denote the strain and kinetic energy function
defined as follows:

𝑈𝑠
= 12 ∬𝑆 ∫

𝑧𝐽

𝑧1

{𝜎𝜃𝜀𝜃 + 𝜎𝑧𝜀𝑧 + 𝜏𝜃𝑧𝛾𝜃𝑧} (𝑅 + 𝑧) 𝑑𝜃 𝑑𝑦 𝑑𝑧,
𝑇𝑠 = 12 ∬𝑆 ∫

𝑧𝐽

𝑧1

𝜌 {𝑢2,𝑡 + 𝑤2,𝑡} (𝑅 + 𝑧) 𝑑𝜃 𝑑𝑦 𝑑𝑧,
(14)

where 𝜌 stands for the material density. Substituting (5) and
(12) into (14), the two energy functions can be further written
as

𝑈𝑠 = 12 ∬𝑆 ∫
𝜁𝐽

𝜁1

{{{𝐶11(∑𝑖 ∑𝑗
𝐿 𝑖𝐿𝑗𝑅𝑖𝑅𝑗

𝜕𝑢𝑖𝜕𝜃
𝜕𝑢𝑗𝜕𝜃 + 2∑

𝑖

∑
𝑗

𝐿 𝑖𝐿𝑗𝑅𝑖𝑅𝑗
𝜕𝑢𝑖𝜕𝜃 𝑤𝑗 +∑𝑖 ∑𝑗

𝐿 𝑖𝐿𝑗𝑅𝑖𝑅𝑗𝑤𝑖𝑤𝑗) + 2𝐶12∑
𝑖,𝑟

∑
𝑗

𝑀𝑖𝑟 𝐿𝑟𝐿𝑗𝑅𝑗 𝑤𝑖
𝜕𝑢𝑗𝜕𝜃

+ 2𝐶12∑
𝑖,𝑟

∑
𝑗

𝑀𝑖𝑟 𝐿𝑟𝐿𝑗𝑅𝑗 𝑤𝑖𝑤𝑗 + 𝐶22∑𝑖,𝑠∑𝑗,𝑟𝑀𝑖𝑠𝑀𝑗𝑟𝐿 𝑠𝐿𝑗𝑤𝑖𝑤𝑗 + 𝐶33∑𝑖,𝑠∑𝑗,𝑟𝑀𝑖𝑠𝑀𝑗𝑟𝐿 𝑠𝐿𝑗𝑢𝑖𝑢𝑗 + 𝐶33∑𝑖,𝑠∑𝑗 𝑀𝑖𝑠
𝐿 𝑠𝐿𝑗𝑅𝑗 𝑢𝑖

𝜕𝑤𝑗𝜕𝜃
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− 2𝐶33∑
𝑖,𝑠

∑
𝑗

𝑀𝑖𝑠 𝐿 𝑠𝐿𝑗𝑅𝑗 𝑢𝑖𝑢𝑗 + 𝐶33∑𝑖 ∑𝑗,𝑟𝑀𝑗𝑟
𝐿 𝑖𝐿𝑟𝑅𝑖

𝜕𝑤𝑖𝜕𝜃 𝑢𝑗 + 𝐶33∑𝑖 ∑𝑗
𝐿 𝑖𝐿𝑗𝑅𝑖𝑅𝑗

𝜕𝑤𝑖𝜕𝜃
𝜕𝑤𝑗𝜕𝜃 − 2𝐶33∑

𝑖

∑
𝑗

𝐿 𝑖𝐿𝑗𝑅𝑖𝑅𝑗
𝜕𝑤𝑖𝜕𝜃 𝑢𝑗

+ 𝐶33∑
𝑖

∑
𝑗

𝐿 𝑖𝐿𝑗𝑅𝑖𝑅𝑗 𝑢𝑖𝑢𝑗
}}}𝑅𝑧𝑑𝜃 𝑑𝑦 𝑑𝑧,

𝑇𝑠 = 12 ∬𝑆 ∫
𝜁𝐽

𝜁1

−𝜌𝜔2{{{∑𝑖 ∑𝑗 𝐿 𝑖𝐿𝑗𝑢𝑖𝑢𝑗 +∑𝑖 ∑𝑗 𝐿 𝑖𝐿𝑗𝑤𝑖𝑤𝑗
}}}𝑅𝑧𝑑𝜃 𝑑𝑦𝑑𝑧.

(15)

2.4. Modified Fourier Series Approximation. The modified
Fourier series approximation is introduced to represent the
possible deformations of the curved beams. Particularly, each
of the basic beam variables is mathematically described as
a set of modified Fourier series including a standard cosine
Fourier series as well as certain auxiliary functions [36–
41]. The auxiliary terms are introduced for the purpose
of removing the entire possible discontinuities with the
basic beam variables and their derivatives at the edges to
form a mathematically complete set and then ensure the
convergence and speed up the calculation [39, 42–45]. In
addition, the governing equations of the beams are derived
andnumerically solved by amodified variational principle for
the sake of making arbitrary boundary conditions applicable.

Asmentioned previously, the displacement variables at an
arbitrary sampling surface in the modified form of Fourier
series are

𝑢𝑗 (𝜃) = 𝑁−2∑
𝑛=0

𝑢𝑛𝑗 cos(𝑛𝜋𝜃Δ𝜃 ) + 𝑢𝑁−1𝑗 𝜃( 𝜃Δ𝜃 − 1)
2

+ 𝑢𝑁𝑗 𝜃2 (𝜃/Δ𝜃 − 1)Δ𝜃 ,
𝑤𝑗 (𝜃) = 𝑁−2∑

𝑛=0

𝑤𝑛𝑗 cos(𝑛𝜋𝜃Δ𝜃 ) + 𝑤𝑁−1𝑗 𝜃( 𝜃Δ𝜃 − 1)
2

+ 𝑤𝑁𝑗 𝜃2 (𝜃/Δ𝜃 − 1)Δ𝜃 ,

(16)

where 𝑢𝑛𝑗 and 𝑤𝑛𝑗 (𝑛 = 0, 1, . . . , 𝑁) are the expansion coeffi-
cients; Δ𝜃 = 𝜃1 − 𝜃0. N represents the truncation number.

The boundary conditions of the curved beams are sup-
posed to be of essential type. The necessary boundary equa-
tions can be stated in functional form as follows by applying
the penalty technique and Lagrange multipliers [6, 46–49]:

Π𝑏 = Π𝑏1 + Π𝑏2;
Π𝑏1
= ∫∫𝑧𝐽
𝑧1

2∑
𝑙=1

(−1)𝑙 {𝜂𝑙𝑢𝜎𝜃 (𝑢 − 𝑢𝑙) + 𝜂𝑙𝑤𝜏𝜃𝑧 (𝑤 − 𝑤𝑙)}󵄨󵄨󵄨󵄨󵄨𝜃=𝜃𝑙 𝑑𝑦𝑑𝑧,

Π𝑏2
= 12 ∫∫𝑧𝐽

𝑧1

2∑
𝑙=1

{𝜂𝑙𝑢𝑘𝑙𝑢 (𝑢 − 𝑢𝑙)2 + 𝜂𝑙𝑢𝑘𝑙𝑤 (𝑤 − 𝑤𝑙)2}󵄨󵄨󵄨󵄨󵄨󵄨𝜃=𝜃𝑙 𝑑𝑦𝑑𝑧,
(17)

where 𝑢𝑙 and 𝑤𝑙 denote the boundary values. 𝑘𝑙𝑢 and 𝑘𝑙𝑤 rep-
resent the penalty parameters. 𝜂𝑙𝑢 and 𝜂𝑙𝑤 are the parameters
which define different restraint conditions. The boundary
potential Π𝑏1 is introduced by means of Lagrange multiplier
technique while the boundary potential Π𝑏2 is introduced
by the aid of the penalty technique to ensure a uniform
formulation to tackle general boundaries [6] and to ensure
a computational stability in computational process. Taking
the end of 𝜃 = 𝜃0, for example, the values of the penalty
parameters and boundary coefficients for different classical
restraint conditions are shown inTable 1. For elastic boundary
conditions, the boundary potentials Π𝑏1 in (17) should be
neglected and the penalty parameters will be determined at
proper values [49].

Therefore, the final variational functional for the curved
beam with general boundaries is defined as

Πtotal (𝑢𝑛𝑗 , 𝑤𝑛𝑗) = Π𝑠 + Π𝑏; 0 ≤ 𝑛 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝐽. (18)

Finally, let the variation of the Πtotal with respect to each
coefficient (𝑢𝑛𝑗 and 𝑤𝑛𝑗 ) equal zero; the governing equations
can be derived in a matrix form as

{K − 𝜔2M}G = 0, (19)

whereK andM stand for the final stiffness andmass matrices
of order 2(𝑁 + 1) ∗ 𝐽. G denotes the vector of the unknown
generalized displacements. Thus, solutions can be obtained
directly by the eigenvalue decomposition of (19) and the roots
of the decomposition are the square of eigenfrequency 𝜔.
The mode shape of the curved beam corresponding to each
eigenfrequency can be constructed by substituting the cor-
responding eigenvector back into the displacement variables
given in (16) and then substituting it in the displacement
distribution formula given in (8).
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Table 1: Values of 𝜂𝑙𝑢, 𝜂𝑙𝑤, 𝑘𝑙𝑢, and 𝑘𝑙𝑤 for different classical boundary
conditions.

Boundary conditions
Boundary
coefficients

Penalty
parameters𝜂0𝑢 𝜂0𝑤 𝑘0𝑢 𝑘0𝑤

F (free): 𝜎𝜃 = 0, 𝜏𝜃𝑧 = 0 0 0 0 0
S1 (simply supported):𝜎𝜃 = 0, 𝑤 = 0 0 1 0 103𝐸
S2 (simply supported):𝑢 = 0, 𝜏𝜃𝑧 = 0 1 0 103𝐸 0

C (clamped): 𝑢 = 0, 𝑤 = 0 1 1 103𝐸 103𝐸

3. Numerical Results and Discussion

Several examples for thick curved beams with different
geometrical dimensions and boundary restraints are pre-
sented to verify the flexibility of the method. The transverse
deformation effects are systematically investigated as well. To
unify the discussion, character string X-Y (X/Y = F, S, C) is
used to represent the boundary conditions of the beams. For
example, C-F represents a circular beam with clamped and
free restraints at the ends 𝜃 = 𝜃0 and 𝜃 = 𝜃1, respectively. To
unify the discussion, the dimensionless variable of frequency
is introduced in the calculation Ω = 𝜔𝑅2𝑚√12𝜌/𝐸ℎ2 (where𝑅𝑚 = 𝑅 + ℎ/2). The beams are supposed to be made of steel
(𝐸 = 210GPa, ] = 0.3, and 𝜌 = 7800 kg/m3).
3.1. Validation. Table 2 gives the first five nondimensional
frequency parameters Ω of C-C supported circular beams.
The numbers of the sampling surfaces and serious truncation
are increased from 11 to 17 and 3 to 9, respectively. The
geometric parameters of the beam are 𝑅𝑚 = 1m, Δ𝜃 =2𝜋/3. For completeness, two thickness-to-radius ratios (i.e.,ℎ/𝑅𝑚 = 0.1 and 0.2) corresponding to the moderately thick
and thick beam configurations are considered in the study.
As observed from Table 2, with the increase of truncated
number, the natural frequencies tend to be constant values
quickly. The maximum differences between the results based
on the “11 × 3” and “17 × 9” computational schemes are
less than 0.2%, which confirms the high convergence of the
present method. The DQM results based on the FSDT [3]
and the Ritz solutions with 2D elasticity theory [32] are also
listed in the table. It is observed that the present solutions
match well with those predicted by Malekzadeh et al. [3]
and Jin et al. [32]. The slight differences between the three
groups of results show the satisfied accuracy of the proposed
approach. Table 3 compares the first six natural frequencies
(Hz) of a circular beam with F-F, F-C, and C-C boundary
conditions obtained by the current approach with those
based on commercial FEM code. The results are calculated
with the beam parameters 𝑅𝑚 = 1m, ℎ/𝑅𝑚 = 0.3 and with
“17 × 9” truncation scheme. Calculations based on FEM
commercial software ANSYS (PLANE82, 0.025m) are used
as the benchmark solutions. In Table 3, it is obvious that the
present method produces good results comparing with FEM.

3.2. Transverse Deformation Effects. The effects of transverse
deformation on the vibration characteristics of curved beams
are investigated in this section. In Figures 2–9, relative
deviations between frequency parametersΩ calculated by the
CBT/FSDT theory models [5] and the present 2D approach
for circular beams with various different geometries and
boundary conditions are considered. The “deviations (%)”
between the results are defined as

Deviations (%) = (ΩCBT/FSDT − Ω2-D)Ω2-D × 100%. (20)

Figures 2–4 show the relative deviations of the 1st, 3rd,
and 5th frequency parameters Ω for circular beams with
different ratios of thickness-to-span length (ℎ/𝐿𝜃). The beam
is supposed to be of unit span length; that is, 𝐿𝜃 = 𝑅Δ𝜃 =1. The ratio of ℎ/𝐿𝜃 is varied between 0.01 and 0.2. F-F,
C-C, and F-C boundaries are considered in the study. The
results obtained by the current method of “𝑁 × 𝐽 = 17× 8” truncation scheme are selected as benchmark. From
the figures, we can see that there is a clear increment of
frequency parameter for the larger thickness-to-span length
ratio and the increment becomes more prominent for higher
modes. The maximum difference can be as much as 35%.
Furthermore, results on the basis of CBT are generally higher
than those based on FSDTmodel and the 2D elasticity theory
because the effects of shear deformations are more significant
in thick beams. It is due to the fact that hypotheses in the CBT
will introduce additional stiffness in themodeling in fact.This
investigation shows that the CBT can be grossly error for the
modeling of moderately thick and thick curved beams. In
addition, it is obvious that the results based on the FSDT are
more accurate than those of CBT since the effects of traverse
deformation are included.

Figure 5 shows a similar study for clamped circular beams
with various thickness-to-radius ratios and span angles.
Geometrical dimensions used in the study are 𝑅𝑚 = 1m.
“𝑁 × 𝐽 = 17 × 9” displacement field is adopted for the 2D
solutions in this study. As expected, the effects of transverse
normal and shear deformations decrease as the span angle
increases. The relative deviations between results based on
the CBT model and the current 2D approach are also very
big and the maximum difference can be as much as 50%.
It can be observed that that the effects of the transverse
normal and shear deformation varied with mode number
and (span) length-to-radius ratio. Generally, lower (span)
length-to-radius ratio values will lead to larger modeling
deviation of vibration behavior since transverse effects are
more significant for short beams.

Figures 6 and 7 consider the fundamental and fifth mode
frequency parametersΩ of a circular beam based on the CBT
and FSDT theorymodels, respectively.The thickness-to-span
length ratio, ℎ/𝐿𝜃, is varied from 0.01 to 0.2, corresponding to
thin to thick beam configurations. Two boundary conditions,
that is, F-F and C-C, are considered in the studies. The beam
is supposed to be of unit span length and unit radius, that is,𝐿𝜃 = 1,𝑅𝑚 = 1m. From the figures, we can see that the effects
of the shear deformation increase generally as the thickness-
to-span length ratio increases. When the thickness-to-span
length ratio is equal to 0.1, the difference between the CBT
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Table 2: Convergence of the lowest five frequency parametersΩ for C-C supported curved beams (𝑅𝑚 = 1m, Δ𝜃 = 2𝜋/3).
𝑁 𝐽 ℎ/𝑅𝑚 = 0.1 ℎ/𝑅𝑚 = 0.2

1 2 3 4 5 1 2 3 4 5

11

3 12.067 21.555 35.782 40.788 63.430 10.959 14.434 24.614 28.932 38.069
5 12.001 21.432 35.717 40.411 63.114 10.791 14.369 24.234 28.727 37.409
7 11.998 21.428 35.716 40.401 63.104 10.788 14.368 24.231 28.724 37.403
9 11.996 21.426 35.715 40.396 63.097 10.786 14.368 24.229 28.722 37.400

12

3 12.043 21.551 35.771 40.679 63.110 10.945 14.433 24.609 28.924 38.004
5 11.984 21.421 35.706 40.300 62.772 10.781 14.367 24.224 28.714 37.338
7 11.981 21.418 35.704 40.293 62.761 10.779 14.366 24.219 28.712 37.332
9 11.980 21.416 35.703 40.288 62.754 10.778 14.366 24.217 28.711 37.330

13

3 12.042 21.531 35.759 40.668 63.069 10.943 14.432 24.596 28.921 37.993
5 11.979 21.407 35.694 40.275 62.318 10.777 14.365 24.215 28.709 37.326
7 11.976 21.405 35.693 40.268 62.308 10.774 14.365 24.211 28.705 37.317
9 11.975 21.403 35.693 40.264 62.302 10.773 14.364 24.209 28.704 37.314

14

3 12.029 21.529 35.757 40.628 63.032 10.937 14.432 24.594 28.918 37.982
5 11.969 21.401 35.692 40.250 62.260 10.772 14.365 24.212 28.705 37.316
7 11.967 21.398 35.691 40.245 62.249 10.769 14.363 24.206 28.701 37.309
9 11.966 21.397 35.690 40.241 62.243 10.769 14.363 24.205 28.701 37.307

15

3 12.027 21.518 35.752 40.625 62.966 10.936 14.431 24.588 28.918 37.981
5 11.966 21.394 35.688 40.239 62.218 10.771 14.364 24.206 28.703 37.314
7 11.964 21.392 35.687 40.233 62.210 10.767 14.363 24.201 28.698 37.304
9 11.963 21.390 35.687 40.230 62.206 10.766 14.363 24.200 28.697 37.302

16

3 12.020 21.516 35.751 40.606 62.964 10.933 14.431 24.587 28.917 37.976
5 11.960 21.390 35.686 40.226 62.208 10.767 14.363 24.205 28.700 37.308
7 11.959 21.387 35.685 40.222 62.199 10.764 14.362 24.198 28.696 37.299
9 11.958 21.386 35.685 40.219 62.195 10.763 14.362 24.197 28.695 37.298

17

3 12.019 21.510 35.749 40.603 62.943 10.933 14.431 24.585 28.916 37.976
5 11.958 21.385 35.684 40.220 62.194 10.767 14.363 24.202 28.699 37.308
7 11.957 21.384 35.683 40.214 62.187 10.763 14.362 24.196 28.694 37.297
9 11.956 21.382 35.683 40.212 62.183 10.762 14.361 24.195 28.693 37.295

FSDT [3] 11.391 20.392 34.001 — — 10.271 13.622 23.107 — —
2D [32] 11.470 20.575 34.105 38.963 60.102 10.507 13.773 23.691 27.680 36.752
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Figure 2: Relative deviations between the first, third, and fifth frequency parameters Ω based on the CBT/FSDT theory models to those of
2D theory for a complete free circular beam with various thickness ratios.
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Table 3: The lowest six frequencies for circular beams with different boundary conditions, geometrical properties, and modeling methods
(Hz, 𝑅𝑚 = 1m, ℎ/𝑅𝑚 = 0.3).
BC Mode Δ𝜃 = 𝜋/4 Δ𝜃 = 𝜋/2 Δ𝜃 = 3𝜋/4

Pre. FEM Diff. (%) Pre. FEM Diff. (%) Pre. FEM Diff. (%)

F-F

1 1861.2 1861.3 0.003 545.85 545.85 0.001 239.19 239.19 0.000
2 3304.8 3304.8 0.001 1333.9 1333.9 0.002 638.87 638.87 0.001
3 3653.6 3653.9 0.007 1800.9 1800.9 0.001 1177.4 1177.4 0.001
4 5514.5 5515.4 0.016 2285.0 2285.1 0.003 1355.5 1355.5 0.003
5 5873.7 5874.5 0.014 3207.8 3207.9 0.004 1790.9 1790.9 0.002
6 6166.1 6166.4 0.005 3344.4 3344.5 0.002 2289.5 2289.5 0.000

F-C

1 373.90 373.99 0.024 104.22 104.23 0.008 50.018 50.017 0.001
2 1420.4 1420.6 0.014 431.29 431.32 0.008 182.16 182.15 0.003
3 1870.6 1870.8 0.009 974.88 974.91 0.003 535.24 535.24 0.001
4 3475.3 3475.8 0.013 1368.0 1368.1 0.005 898.42 898.43 0.001
5 4773.6 4774.1 0.010 2131.7 2131.9 0.007 1173.9 1173.9 0.002
6 5133.8 5134.0 0.005 2556.9 2556.9 0.001 1692.3 1692.3 0.002

C-C

1 1683.9 1684.5 0.033 850.21 850.24 0.004 512.94 512.93 0.002
2 2923.8 2924.6 0.028 1079.5 1079.7 0.015 665.65 665.66 0.001
3 3461.9 3462.8 0.027 1805.4 1805.5 0.007 1159.1 1159.1 0.002
4 4991.2 4992.3 0.022 2056.6 2056.9 0.012 1227.9 1227.9 0.002
5 6282.3 6283.3 0.017 2984.2 2984.5 0.009 1732.5 1732.5 0.002
6 6414.4 6414.6 0.003 3280.8 3281.0 0.005 2148.3 2148.3 0.001
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Figure 3: Relative deviations between frequency parameters Ω based on the CBT/FSDT theory models to those of 2D theory for circular
beams with various thickness ratios (F-C boundary condition).
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Figure 4: Relative deviations between frequency parameters Ω based on the CBT/FSDT theory models to those of 2D theory for circular
beams with various thickness ratios (C-C boundary condition).
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Figure 5: Relative deviations between frequency parameters Ω based on the CBT/FSDT theory models to those of 2D theory for circular
beams with different thickness-to-radius ratios (C-C boundary condition).

and FSDT results can be as many as 21.6% and 25.3% for the
F-F and C-C boundary conditions, respectively. In addition,
it is obvious that the transverse shear deformation has greater
influence on the higher modes.

Elasticity solutions for circular beams with different
geometrical dimensions and several sets of classical boundary

conditions are presented in the following presentation. The
lowest six frequencies considering three different thickness-
to-radius ratios are presented in Table 4 (Δ𝜃 = 𝜋/2), where
the classical boundary conditions are included. “𝑁×𝐽 = 17×9” displacement field is adopted in this study. From the results
of Table 4, it becomes clear that the frequency parameters
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Figure 6: Frequency parameters Ω of circular beams with various
thickness ratios based on the CBT and FSDT theory models (F-F
boundary condition).

Ω decrease when the thickness of the beams is increased.
However, it should be pointed out that the beam’s natural
frequencies (Hz) are increasing actually because the stiffness
of a beam increases generally when its thickness is increased.
For the sake of completeness, the first three modal shapes
for the beam with C-C boundary conditions are presented in
Figure 8. The figure indicates that the modal shapes of thick
beams are characterized by complex coupling between the
extension, bending, and shearing modes.

The lowest six frequency parameters Ω of the certain
circular beams are presented in Table 5 with a variety of clas-
sical restraints and span angles. The thickness ratio (ℎ/𝑅𝑚)
of the beams is assumed to be constant as ℎ/𝑅𝑚 = 0.1, 20.
Meanwhile, the span angleΔ𝜃 is taken asΔ𝜃 = 𝜋/3, 2𝜋/3, and𝜋, respectively. “𝑁×𝐽 = 20×9” displacement field is adopted
in this study. First of all, it is seen that the circular beams with
C-C boundary conditions have highest frequency parameters
among all boundary cases. The frequency parameters of the
beam decrease when the span angle increases because when
the span angle increases, the flexibility of the beam increases
synchronously. Figure 9 gives the three lowest mode shapes
for the circular beam of Table 6 with FC restraint. The figure
reveals that the change in the span angle can directly affect the
mode shapes of the beam. The modes of the beam are noted
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Figure 7: Frequency parameters Ω of circular beams with various
thickness ratios based on the CBT and FSDT theory models (C-C
boundary condition).

to be determined by bending, shear, and normal deformation,
which could not be determined by the CBT and FSDT theory
models.

Figure 10 shows the deviations between the first, third,
and fifth frequency parameters Ω based on the CBT/FSDT
theory models and those of the current 2D formulation for
circular beams for various values of thickness-to-radius ratios
and restraint rigidities. The beams (𝐿𝜃 = 1) are supposed to
be clamped at one end (𝜃 = 𝜃0) and elastically supported
at the other end with stiffness rigidity 𝑘1𝑢 = 𝑘1𝑤 = 𝜂 (where𝜂/𝐷 ∈ [10−2, 108], 𝐷 = 𝐸ℎ3/12). “𝑁 × 𝐽 = 17 × 9”
displacement field is adopted in this study. From the figure,
it is obvious that the effects of the transverse normal and
shear deformation have a great influence on the frequencies
of the beam when subjected to elastic boundary conditions.
According to Figure 10, we can see that the errors of the CBT
and FSDT are acceptable when the restraint rigidity 𝜂/𝐷 is
smaller than 10−1. However, the error increases sharply when
it is increased from 10−1 to 105. Then, the error decreases and
remains the same when 𝜂/𝐷 tends to be infinity. The error of
the CBT/FSDT can be as much as 180%, 120%, and 85% for
the worst case in each study.

Figures 11–13 show similar study for circular beams with
different type of elastic boundary restraints. The following
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Table 4: The lowest six frequency parametersΩ of classically restrained circular beams with various thickness ratios (𝑅𝑚 = 1m, Δ𝜃 = 𝜋/2).
ℎ/𝑅𝑚 Mode Boundary condition

F-F F-S1 F-S2 F-C S1-S1 S1-S2 S1-C S2-S2 S2-C C-C

0.05

1 8.3653 5.2974 1.8360 1.4976 2.6801 7.5652 4.3680 2.6800 9.5587 22.270
2 23.694 18.869 11.065 7.1854 14.464 23.307 17.702 14.464 26.891 39.349
3 46.884 40.247 28.619 22.477 34.040 46.609 38.807 34.039 50.676 66.753
4 77.238 68.895 53.693 45.339 60.960 77.028 66.582 60.959 66.953 74.701
5 114.23 104.30 85.785 74.297 94.751 97.943 92.155 69.297 86.221 114.39
6 154.82 145.91 97.943 94.711 134.88 114.06 106.77 94.749 123.04 143.50

0.1

1 8.2897 5.2643 1.8326 1.4942 2.6707 7.4945 4.3126 2.6706 9.2748 21.246
2 23.048 18.453 10.919 7.0603 14.213 22.672 17.053 14.213 24.596 27.624
3 44.492 38.450 27.682 21.456 32.728 44.232 35.608 32.727 34.057 46.328
4 71.197 63.988 48.914 40.384 57.039 48.917 47.535 34.672 50.034 64.343
5 77.261 77.261 50.605 49.486 77.259 71.006 63.829 57.038 73.445 79.316
6 102.04 93.921 78.471 70.567 86.002 101.899 92.113 77.257 80.161 98.509

0.2

1 8.0147 5.1403 1.8195 1.4802 2.6343 7.2362 4.1083 2.6343 8.2708 16.029
2 20.994 17.077 10.404 6.6156 13.354 20.658 14.846 13.354 16.094 18.192
3 37.663 33.367 24.305 17.818 28.877 24.349 23.209 17.384 24.260 35.875
4 38.678 38.337 24.870 24.700 38.320 37.789 32.799 28.876 36.821 36.990
5 57.082 52.145 42.532 36.793 47.221 54.074 49.629 38.319 42.107 53.898
6 70.432 70.314 54.084 53.013 67.144 57.039 54.498 47.220 59.788 68.390

Mode 1 Mode 2 Mode 3

ℎ/Rm = 0.05

ℎ/Rm = 0.10

ℎ/Rm = 0.20

Figure 8: Modal shapes relative to the C-C circular curved beams of Table 4.

geometric parameters are used:𝑅𝑚 = 1, ℎ/𝑅𝑚 =0.2.Thebeam
is clamped at the end of 𝜃 = 𝜃0 and elastically restrained at
the other end.The following three types of elastic supports are
considered in the study: axially elastic restraint (𝑘1𝑢 = 𝜂, 𝑘1𝑤 =0), transversely elastic restraint (𝑘1𝑢 = 0, 𝑘1𝑤 = 𝜂), and elastic
restraint in both directions (𝑘1𝑢 = 𝑘1𝑤 = 𝜂). The changes of the
relative deviations between frequency parametersΩ based on
the CBT/FSDT theory models and those of the current 2D
formulation with respect to elastic rigidity 𝜂/𝐷 are the same
as Figure 10.

Finally, Table 6 displays the lowest three nondimensional
frequencies Ω for circular beams with a variety of geometric

constants and restrained rigidities. The elastic boundary
conditions studied in the table are the same as those of Figures
11–13. The geometrical dimensions used in the calculation
are 𝑅𝑚 = 1m, 𝜃0 = 𝜋/2. “𝑁 × 𝐽 = 17 × 9” displacement
field is adopted in this study. The table reveals that the
frequencies of the beam will increase when the rigidity of
the restraint increases. This is because when the restraint
rigidity increases, the stiffness of the beam increases syn-
chronously while themass remains unchanged. Table 7 shows
similar studies for the beams with different span angles. The
geometrical parameters and material properties used in the
calculation are 𝑅𝑚 = 1m, h/𝑅𝑚 = 0.1. These results can
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Table 5: The lowest six frequency parametersΩ of classically restrained circular beams with various span angles (𝑅𝑚 = 1m, ℎ/𝑅𝑚 = 0.1).
Δ𝜃 Mode Boundary condition

F-F F-S1 F-S2 F-C S1-S1 S1-S2 S1-C S2-S2 S2-C C-C

𝜋/3
1 19.088 12.761 4.4804 3.2579 7.4946 1.0378 11.416 7.4943 20.441 34.046
2 50.820 41.432 25.315 17.105 32.728 18.234 38.524 32.727 34.047 47.270
3 94.059 82.289 60.572 46.643 71.007 50.481 60.019 34.672 59.680 90.478
4 109.23 109.21 62.328 62.105 109.21 62.312 81.544 71.005 101.17 106.39
5 144.99 131.64 106.10 92.330 118.59 93.844 128.08 109.20 110.73 139.31
6 200.96 186.60 158.38 140.84 172.44 144.88 158.76 118.58 154.51 189.04

2𝜋/3
1 4.4805 2.6710 0.9739 0.8749 1.0378 0.2623 1.9658 1.0378 4.7592 11.419
2 12.761 10.031 5.7637 3.6195 7.4946 3.6888 9.0668 7.4945 14.121 20.445
3 25.315 21.674 15.360 11.728 18.234 12.365 20.381 18.234 26.580 34.049
4 41.432 36.989 28.906 23.886 32.728 25.042 34.259 32.727 34.065 38.533
5 60.573 55.456 43.262 37.328 50.482 41.228 42.524 34.672 45.344 59.694
6 62.330 62.315 45.861 44.506 62.313 43.263 55.402 50.481 59.944 60.023

𝜋
1 1.8327 0.9507 0.4372 0.4349 2.6707 1.0378 3.3476 2.6706 1.5851 4.3142
2 5.2643 3.9432 2.1308 1.3692 7.4946 4.8346 8.4943 7.4945 5.6604 9.2781
3 10.919 9.1645 6.3020 4.6433 14.213 10.627 15.497 14.213 11.769 17.059
4 18.453 16.288 12.501 10.245 22.673 18.234 24.055 22.672 19.579 24.603
5 27.683 25.134 20.505 17.608 32.728 27.510 33.194 32.728 28.529 34.059
6 38.450 35.548 30.155 26.470 44.232 38.308 38.551 34.673 34.072 35.618

Mode 1 Mode 2 Mode 3

Δ =


3

Δ =
2

3

Δ = 

Figure 9: Modal shapes relative to the F-C circular curved beams of Table 5.

be used to verify new 1D refined beam theories for further
studies.

4. Conclusions

This paper proposes an accurate modified Fourier series-
based sampling surface approach for the analytical evaluation
of the vibration characteristics of thick curved beams. The
approach is valid for arbitrary thickness configuration and

maintains its simplicity and uniform in any type of boundary
conditions (i.e., classical boundary condition, elastic support,
or their combination). The theoretical models of the beams
are based on the 2D theory of elasticity including the effects
of both transverse shear and normal deformations. Under
the current framework, the transverse beam domain is dis-
cretized by a set of nonequally spaced sampling surfaces and
the displacement components coinciding with these surfaces
are mathematically described as an set of modified Fourier
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Table 6: Frequency parameters Ω for elastically supported circular beams with different thickness ratios and restraint rigidities (𝑅𝑚 = 1m,𝜃0 = 𝜋/2).
ℎ/𝑅𝑚 𝜂/𝐷 𝑘𝑢 = 𝜂, 𝑘𝑤 = 0 𝑘𝑢 = 0, 𝑘𝑤 = 𝜂 𝑘𝑢 = 𝑘𝑤 = 𝜂

1 2 3 1 2 3 1 2 3

0.01

100 1.5013 7.2263 22.817 1.5040 7.2283 22.818 1.5066 7.2283 22.818
101 1.5249 7.2266 22.817 1.5515 7.2464 22.823 1.5770 7.2467 22.823
102 1.7442 7.2296 22.818 1.9406 7.4289 22.877 2.1392 7.4312 22.878
103 3.1816 7.2654 22.825 3.3673 9.2160 23.442 4.4370 9.2166 23.451
104 6.8030 9.5884 22.907 4.2514 15.578 29.613 9.5523 15.677 29.817
105 7.0247 21.852 30.250 4.3720 17.693 38.640 17.584 25.942 40.813

0.05

100 1.5109 7.1856 22.477 1.5243 7.1955 22.480 1.5374 7.1957 22.480
101 1.6253 7.1873 22.477 1.7397 7.2863 22.506 1.8517 7.2878 22.507
102 2.4911 7.2050 22.483 2.8562 8.2070 22.780 3.5131 8.2091 22.786
103 6.0299 7.7159 22.538 4.1096 13.588 25.951 7.4008 13.649 26.053
104 7.0667 18.929 23.904 4.3410 17.262 36.620 16.954 18.929 37.704
105 7.7839 22.923 44.333 4.3653 17.659 38.610 18.203 33.998 52.083

0.10

100 1.5207 7.0608 21.456 1.5468 7.0804 21.461 1.5725 7.0808 21.462
101 1.7408 7.0650 21.458 1.9337 7.2624 21.514 2.1335 7.2658 21.516
102 3.1733 7.1131 21.481 3.3372 9.0383 22.066 4.4148 9.0427 22.094
103 6.6891 9.3939 21.720 4.1854 15.042 27.958 9.3746 15.112 28.313
104 7.4853 19.902 25.792 4.2996 16.861 34.871 17.240 20.798 37.990
105 8.7622 23.296 32.768 4.3113 17.034 35.536 19.364 26.704 43.372

0.15

100 1.5282 6.8657 19.865 1.5660 6.8947 19.872 1.6040 6.8956 19.873
101 1.8473 6.8741 19.872 2.0917 7.1678 19.946 2.3677 7.1741 19.954
102 3.7026 6.9755 19.942 3.5429 9.6553 20.751 4.9852 9.6663 20.838
103 6.7367 10.615 20.652 4.1440 14.969 26.889 10.523 15.059 28.171
104 7.8630 17.816 24.479 4.2159 15.961 28.964 17.085 18.064 36.130
105 8.6753 19.710 26.673 4.2233 16.055 29.097 19.121 19.856 39.345

Table 7: Frequency parameters Ω for elastically supported circular beams with different span angles and restraint rigidities (𝑅𝑚 = 1m,ℎ/𝑅𝑚 = 0.1).
𝜃0 𝜂/𝐷 𝑘𝑢 = 𝜂, 𝑘𝑤 = 0 𝑘𝑢 = 0, 𝑘𝑤 = 𝜂 𝑘𝑢 = 𝑘𝑤 = 𝜂

1 2 3 1 2 3 1 2 3

𝜋/3
100 3.2671 17.105 46.643 3.3052 17.116 46.646 3.3143 17.117 46.646
101 3.3484 17.110 46.647 3.6978 17.217 46.674 3.7784 17.222 46.679
102 4.0665 17.154 46.688 6.0927 18.272 46.962 6.5964 18.303 47.008
103 8.0451 17.639 47.081 10.265 27.077 50.196 13.084 27.089 50.748
104 15.321 23.449 49.869 11.295 37.199 59.270 23.265 37.875 68.723
105 18.965 31.838 55.957 11.403 38.393 59.956 31.839 42.697 83.774

2𝜋/3
100 0.9258 3.6197 11.729 0.9197 3.6507 11.737 0.9683 3.6508 11.737
101 1.2960 3.6210 11.731 1.2006 3.9285 11.815 1.5359 3.9290 11.818
102 3.1142 3.6536 11.753 1.7696 5.9362 12.680 3.3494 5.9983 12.716
103 3.6599 9.1322 12.165 1.9434 8.6156 18.070 7.8507 9.3882 18.576
104 3.9841 12.050 23.150 1.9635 9.0227 20.175 9.2396 17.386 26.000
105 4.5641 13.485 25.680 1.9656 9.0622 20.360 10.492 19.461 32.929

𝜋
100 0.5264 1.3719 4.6438 0.4487 1.4211 4.6595 0.5367 1.4241 4.6599
101 1.0030 1.4177 4.6480 0.5063 1.8014 4.8097 1.0033 1.8520 4.8159
102 1.3161 3.0900 4.7182 0.5555 2.9075 6.2241 2.3074 3.3600 6.3712
103 1.3396 4.5807 9.8024 0.5642 3.3007 8.2147 3.1616 6.9331 9.9866
104 1.4308 4.9059 10.622 0.5651 3.3429 8.4675 3.4291 8.1148 15.259
105 1.5524 5.4708 11.429 0.5652 3.3471 8.4916 4.0046 8.7902 16.261
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Figure 10: Relative deviations between frequency parametersΩ based on the CBT/FSDT theory models to those of 2D theory for elastically
restrained circular beams with different restraint rigidities (𝜃 = 𝜃0: clamped; 𝜃 = 𝜃1: 𝑘𝑢 = 𝑘𝑤 = 𝜂).
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Figure 11: Relative deviations between frequency parametersΩ based on the CBT/FSDT theory models to those of 2D theory for elastically
restrained circular beams with different restraint rigidities (𝜃 = 𝜃0: clamped; 𝜃 = 𝜃1: 𝑘1𝑢 = 𝜂, 𝑘1𝑤 = 0).

series including the certain auxiliary terms which are used to
form amathematically complete set and guarantee the results
convergent to the exact solutions. The governing equations
of the beams are derived and numerically solved using a
modified variational principle by the use of the penalty

technique as well as Lagrange multipliers. Elasticity solutions
including transverse shear and normal effects are compared
with the corresponding one-dimensional results in terms of
the classical and first-order shear deformation theories. The
influences of transverse normal and shear deformation on
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Figure 12: Relative deviations between frequency parametersΩ based on the CBT/FSDT theory models to those of 2D theory for elastically
restrained circular beams with different restraint rigidities (𝜃 = 𝜃0: clamped; 𝜃 = 𝜃1: 𝑘1𝑢 = 0, 𝑘1𝑤 = 𝜂).
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Figure 13: Relative deviations between frequency parametersΩ based on the CBT/FSDT theory models to those of 2D theory for elastically
restrained circular beams with different restraint rigidities (𝜃 = 𝜃0: clamped; 𝜃 = 𝜃1: 𝑘1𝑢 = 𝑘1𝑤 = 𝜂).
the vibration characteristics are systematically evaluated.The
results show that the proposed method is applicable for thick
circular beams with arbitrary boundary conditions.
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[15] J. Ying, C. F. Lü, and W. Q. Chen, “Two-dimensional elasticity
solutions for functionally graded beams resting on elastic
foundations,” Composite Structures, vol. 84, no. 3, pp. 209–219,
2008.

[16] S. M. Hasheminejad and A. Rafsanjani, “Two-dimensional
elasticity solution for transient response of simply supported
beams under moving loads,” Acta Mechanica, vol. 217, no. 3-4,
pp. 205–218, 2011.

[17] Y. Xu andD. Zhou, “Two-dimensional thermoelastic analysis of
beams with variable thickness subjected to thermo-mechanical
loads,” Applied Mathematical Modelling. Simulation and Com-
putation for Engineering and Environmental Systems, vol. 36, no.
12, pp. 5818–5829, 2012.

[18] Y. Xu and D. Zhou, “Elasticity solution of multi-span beams
with variable thickness under static loads,” Applied Mathemati-
cal Modelling. Simulation and Computation for Engineering and
Environmental Systems, vol. 33, no. 7, pp. 2951–2966, 2009.

[19] A. M. Zenkour, M. N. M. Allam, and M. Sobhy, “Effect of
transverse normal and shear deformation on a fiber-reinforced
viscoelastic beam resting on two-parameter elastic founda-
tions,” International Journal of Applied Mechanics, vol. 2, no. 1,
pp. 87–115, 2010.

[20] P. Malekzadeh and G. Karami, “A mixed differential quadrature
and finite element free vibration and buckling analysis of
thick beams on two-parameter elastic foundations,” Applied
Mathematical Modelling, vol. 32, no. 7, pp. 1381–1394, 2008.

[21] A. Rosen, “Structural and dynamic behavior of pretwisted rods
and beams,”AppliedMechanics Reviews, vol. 44, no. 12, pp. 483–
515, 1991.

[22] P. Chidamparam and A.W. Leissa, “Vibrations of planar curved
beams, rings, and arches,” Applied Mechanics Reviews, vol. 46,
no. 9, pp. 467–483, 1993.

[23] D. H. Hodges, Nonlinear Composite Beam Theory, American
Institute of Aeronautics and Astronautics, Reston ,VA, USA,
2006.

[24] M. Hajianmaleki and M. S. Qatu, “Vibrations of straight and
curved composite beams: A review,” Composite Structures, vol.
100, pp. 218–232, 2013.

[25] F. Tornabene, N. Fantuzzi, M. Bacciocchi, and E. Viola, “Accu-
rate inter-laminar recovery for plates and doubly-curved shells
with variable radii of curvature using layer-wise theories,”
Composite Structures, vol. 124, pp. 368–393, 2015.

[26] E. Carrera, S. Brischetto, M. Cinefra, and M. Soave, “Effects of
thickness stretching in functionally graded plates and shells,”
Composites Part B: Engineering, vol. 42, no. 2, pp. 123–133, 2011.

[27] W. T. Koiter, “A consistent first approximation in the general
theory of thin elastic shells,” in Proceedings of first symposium
on the theory of thin elastic shells, North-Holland, Amsterdam,
1960.

[28] T. Ye and G. Jin, “Elasticity solution for vibration of generally
laminated beams by a modified Fourier expansion-based sam-
pling surface method,” Computers and Structures, vol. 167, pp.
115–130, 2016.

[29] W. L. Li, “Free vibrations of beams with general boundary
conditions,” Journal of Sound and Vibration, vol. 237, no. 4, pp.
709–725, 2000.

[30] G. M. Kulikov, S. V. Plotnikova, M. G. Kulikov, and P. V.
Monastyrev, “Three-dimensional vibration analysis of layered
and functionally graded plates through sampling surfaces for-
mulation,” Composite Structures, vol. 152, pp. 349–361, 2016.

[31] G. M. Kulikov and S. V. Plotnikova, “Three-Dimensional
Solution of the Free Vibration Problem for Metal-Ceramic
Shells Using the Method of Sampling Surfaces,” Mechanics of
Composite Materials, vol. 53, no. 1, pp. 31–44, 2017.

[32] G. Jin, T. Ye, and Z. Su, “Elasticity solution for vibration of
2-D curved beams with variable curvatures using a spectral-
sampling surface method,” International Journal for Numerical
Methods in Engineering, vol. 111, no. 11, pp. 1075–1100, 2017.

[33] G. M. Kulikov, “Refined global approximation theory of multi-
layered plates and shells,” Journal of Engineering Mechanics, vol.
127, no. 2, pp. 119–125, 2001.

[34] G.M. Kulikov and E. Carrera, “Finite deformation higher-order
shell models and rigid-body motions,” International Journal of
Solids and Structures, vol. 45, no. 11-12, pp. 3153–3172, 2008.



www.manaraa.com

Shock and Vibration 17

[35] G. M. Kulikov and S. V. Plotnikova, “Exact 3D stress analysis
of laminated composite plates by sampling surfaces method,”
Composite Structures, vol. 94, no. 12, pp. 3654–3663, 2012.

[36] W. L. Li, “Comparison of fourier sine and cosine series expan-
sions for beams with arbitrary boundary conditions,” Journal of
Sound and Vibration, vol. 255, no. 1, pp. 185–194, 2003.

[37] G. Jin, T. Ye, and S. Shi, “Three-dimensional vibration analysis of
isotropic and orthotropic open shells and plates with arbitrary
boundary conditions,” Shock andVibration, vol. 2015, Article ID
896204, 29 pages, 2015.

[38] T. Ye, G. Jin, and Y. Zhang, “Vibrations of composite laminated
doubly-curved shells of revolutionwith elastic restraints includ-
ing shear deformation, rotary inertia and initial curvature,”
Composite Structures, vol. 133, pp. 202–225, 2015.

[39] G. Jin, T. Ye, X. Wang, and X. Miao, “A unified solution
for the vibration analysis of FGM doubly-curved shells of
revolution with arbitrary boundary conditions,” Composites
Part B: Engineering, vol. 89, pp. 230–252, 2016.

[40] Z. Su, G. Jin, and T. Ye, “Vibration analysis and transient
response of a functionally graded piezoelectric curved beam
with general boundary conditions,” Smart Materials and Struc-
tures, vol. 25, no. 6, Article ID 065003, 2016.

[41] T. Ye, G. Jin, and Z. Su, “Three-dimensional vibration analysis
of laminated functionally graded spherical shells with general
boundary conditions,” Composite Structures, vol. 116, no. 1, pp.
571–588, 2014.

[42] T. Ye, G. Jin, and Z. Su, “Three-dimensional vibration analysis
of functionally graded sandwich deep open spherical and
cylindrical shells with general restraints,” Journal of Vibration
and Control, vol. 22, no. 15, pp. 3326–3354, 2016.

[43] G. Jin, T. Ye, X. Ma, Y. Chen, Z. Su, and X. Xie, “A uni-
fied approach for the vibration analysis of moderately thick
composite laminated cylindrical shells with arbitrary boundary
conditions,” International Journal ofMechanical Sciences, vol. 75,
pp. 357–376, 2013.

[44] Z. Su, G. Jin, Y.Wang, and X. Ye, “A general Fourier formulation
for vibration analysis of functionally graded sandwich beams
with arbitrary boundary condition and resting on elastic foun-
dations,” Acta Mechanica, vol. 227, no. 5, pp. 1493–1514, 2016.

[45] G. Jin, T. Ye, X. Jia, and S. Gao, “A general Fourier solution
for the vibration analysis of composite laminated structure ele-
ments of revolution with general elastic restraints,” Composite
Structures, vol. 109, no. 1, pp. 150–168, 2014.

[46] Y. Qu, Y. Chen, X. Long, H. Hua, and G. Meng, “A modified
variational approach for vibration analysis of ring-stiffened
conical-cylindrical shell combinations,” European Journal of
Mechanics. A. Solids, vol. 37, pp. 200–215, 2013.

[47] Y. Qu, X. Long, H. Li, and G. Meng, “A variational formulation
for dynamic analysis of composite laminated beams based on
a general higher-order shear deformation theory,” Composite
Structures, vol. 102, pp. 175–192, 2013.

[48] T. Ye, G. Jin, and Z. Su, “Three-dimensional vibration analysis
of sandwich and multilayered plates with general ply stacking
sequences by a spectral-sampling surface method,” Composite
Structures, vol. 176, pp. 1124–1142, 2017.

[49] S. Ilanko, “Penalty methods for finding eigenvalues of continu-
ous systems: Emerging challenges and opportunities,” Comput-
ers and Structures, vol. 104-105, pp. 50–54, 2012.



www.manaraa.com

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.


